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The coordinate relaxation method for the iterative calculation of the lowest (or 
highest) root of a symmetric matrix, based on the minimization (or maximization) of the 
Rayleigh quotient, has been generalized to make it possible to obtain several of the 
lowest (or highest) roots in order without explicitly modifying the original matrix. The 
method is particularly suitable for very large matrices (even of order lo4 or more), 
especially if they are sparse, such as those which occur in large-scale configuration 
interaction calculations. A modified a2 extrapolation procedure has been found to 
accelerate convergence in the more difficult cases, such as those involving nearly 
degenerate roots. 

I. INTRODUCTION 

Large-scale configuration interaction (CI) calculations of electronic wave- 
functions of atoms and molecules have become practical and increasingly common 
in recent years [l-4]. Large symmetric matrices, typically of order a few 
hundred or a few thousand, are produced in such calculations, and one or more 
of their lowest eigenvalues and corresponding eigenvectors are required. These 
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matrices usually have a dominant main diagonal and are sparse (sometimes no 
more than 5 % of their elements are nonzero [4], but these elements are generally 
distributed in an irregular manner throughout the matrix), so that iterative methods, 
particularly those which can be made to use and preserve the sparseness of the 
matrix throughout the calculation, are most suitable for the determination of the 
eigenvalues and eigenvectors. The size of the matrices is often such that they 
cannot be accommodated completely in the computer’s central memory, and 
therefore the most appropriate eigenvalue procedures are those which can easily 
be organized to require small sections of the matrix at a time in some convenient 
order (such as using one row at a time of the lower triangle of the matrix, sequen- 
tially, preferably with zero elements omitted [5, 61). It is also convenient if the 
original matrix is not modified in the course of the calculation, so that repeated 
rewriting of the modified matrix on auxiliary storage is not required. 

A method which has frequently been used for extracting the lowest eigenvalue 
of large Cl matrices is that of Nesbet [7], which can easily be organized to satisfy 
all the desiderata discussed above [5, 61. It is an iterative procedure, essentially 
identical to Cooper’s relaxation method 181, in which one component at a time of 
a trial vector is adjusted so as to satisfy the corresponding equation of the eigen- 
value problem (using the Rayleigh quotient of the trial vector as the current 
eigenvalue estimate), except that Nesbet’s algorithm also provides a very con- 
venient formula for updating the Rayleigh quotient after each adjustment. 

An alternative iterative approach for finding the lowest (or highest) eigenvalue 
of a symmetric matrix A is based on the minimization (or maximization) of the 
Rayleigh quotient 

p(v) = (v, -W/(v, v> (1) 

with respect to the trial vector v. One procedure using this approach is the gradient 
method of Hestenes and Karush [9, lo], in which each iteration consists of 
adjusting v by adding to it an appropriate multiple of the gradient of p, 

VP(V) = 2L4 - ~Wlv/~v, v>. (2) 

Alternatively, this approach can be cast in a relaxational form (see, for example, 
Fadeev and Fadeeva [ll], who refer to this as the “method of coordinate relaxa- 
tion”); in this case only one component of v is adjusted in each step so as to decrease 
(or increase) p(v) as much as possible, a complete iteration consisting of a cycle 
of such adjustments of all components in turn, and the iterations are continued 
until all the adjustments in a complete cycle are sufficiently small. The optimum 
adjustment in each step is obtained very easily by the solution of a simple quadratic 
equation, and the Rayleigh quotient of the adjusted vector is also easily obtained 
without referring back to the matrix A. This procedure (which we shall refer to 
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as the method of optimal relaxations, or MOR) is the basis for the techniques 
proposed in the present paper for computing several eigenvalues and eigenvectors 
of large matrices and has been used successfully at this laboratory for matrices 
of order up to -8000. A variant of MOR in which several components of v are 
optimized simultaneously, requiring a “mini-iteration” in each step (involving the 
repeated solution of a small set of linear simultaneous equations) in order to find 
the optimal adjustments, has been used in CI calculations by Bender and 
Davidson [2, 121. A variant of the gradient method which also minimizes the 
Rayleigh quotient relative to a small subspace of A at a time has been proposed 
by Karush [13] (see also Hestenes [14]). An extension of the gradient procedure 
to include the effect of higher derivatives has been developed by Empedocles [15]. 

Examination of higher roots has been quite uncommon in the case of very large 
CI matrices, partly because the matrix is often derived from a basis set which is 
only appropriate for the description of the lowest eigenstate, but also because the 
above methods, in their basic form, are unsuitable for the determination of any 
but the lowest (and highest) root. Actually, a practical procedure for obtaining 
additional eigenvectors with the gradient method by an approach due to Lanczos 
[16] has been pointed out by Hestenes and Karush [9, lo], but, as we shall see 
later, the gradient method is less convenient for very large matrices than the relaxa- 
tion methods. Cooper [8] has shown a very convenient technique for the computa- 
tion of additional eigenvectors in a somewhat specialized situation, and a general- 
ization of his approach forms the basis for one of the two methods proposed in 
the present paper. 

Experience at this and other laboratories has shown that the basic form of the 
Cooper-Nesbet method (as well as the method of optimal relaxations) is very 
effective for the determination of the lowest eigenvalue of large CI matrices,l 
but it is generally almost impossible to get it to converge to a higher root, even 
with a reasonably good starting approximation, particularly if this root is within 
the range of values spanned by the diagonal elements of the matrix (for a brief 
discussion of the convergence properties of Nesbet’s method, see 1.51). It has been 
found in this laboratory that repeated orthogonalization of the trial vector to 
the previously obtained lower eigenvectors throughout the iterations (suggested, 
for example, by Hestenes and Karush [9]) could often overcome this problem, 
and an efficient procedure for carrying out the necessary Gram-Schmidt ortho- 
gonalizations without excessive recomputations has been devised by Gilman [17], 

1 In the original form of this method as proposed by Nesbet [7] one component of the trial 
vector (usually the largest) is kept constant throughout the iterations; this has however been 
found to make convergence very slow when the corresponding component of the normalized 
eigenvector was smaller than about 0.8. Subsequent experience has shown that allowing all 
components to participate in the relaxation process corrects this deficiency, and convergence 
is then generally good even if no component of the eigenvector is dominant. 
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but even then the method was sometimes ineffective and often slow. Traditional 
deflation methods (see, e.g., Wilkinson [18]) could in principle be used, after each 
root is found, in order to remove that eigenvalue and the corresponding eigen- 
vector from the matrix (reducing its order by I) so that the next root can then be 
determined by the Cooper-Nesbet or optimal relaxations method. But, if applied 
explicitly, this means that the original matrix must be modified extensively (and 
quite laboriously), destroying its sparseness in the process. 

Well-known methods of matrix diagonalization, such as those of Givens and 
of Householder (see, e.g., Wilkinson [18]) cannot be easily applied to matrices 
which are too big to fit into the computer’s central memory and cannot be con- 
veniently made to take advantage of the matrix’s sparseness,2 thus they have 
generally been used in relatively small CI calculations only. Furthermore, the 
tridiagonalization step in these methods involves a computational effort which is 
proportional to 11~ (where n is the order of the matrix), while the relaxation methods 
require an effort which is approximately proportional to nZ (for each root sought). 
In the present paper it will be shown that the method of optimal relaxations can 
easily be generalized to provide a quite simple procedure for obtaining several 
of the lowest (or highest) roots, in order, of large sparse matrices, without sacrificing 
any of the features which make it so convenient and effective for the single lowest 
(or highest) root. 

Section II establishes the notation, discusses the basic form of the method of 
optimal relaxations, and examines its relationship to the Cooper-Nesbet and 
gradient methods. Sections III and IV describe two alternative generalizations for 
the determination of several roots. Both these approaches have been found to be 
quite effective in a number of CI calculations involving thousands of configurations 
each [4, 221, and no definite preference for one or the other has been established 
by the authors. An extrapolation procedure to speed up convergence in problem- 
atic cases is described in Section V. 

II. THE METHOD OF OPTIMAL RELAXATIONS FOR THE 
LOWEST ROOT OF A SYMMETRIC MATRIX 

1, Notation 

Given a real symmetric matrix A of order II, its eigenvalues and eigenvectors 
will be denoted by hi and xi , respectively, 

Axi = &xi (i=1,2 n), ,..., (3) 

r For methods which attempt to overcome this problem see Tewarson [19]. A review of recent 
work on computations with sparse matrices has been given by Tewarson [20]; a number of 
pertinent papers have appeared in the proceedings of a recent conference [21]. 
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with the hi arranged in increasing order, 

and the eigenvectors chosen orthonormal, 

Cxi 9 xj> = scj (i,j = 1, 2 )...) n). (5) 

[While the analysis in this paper deals with real matrices and vectors only, the 
generalization to the case in which A is complex hermitian is straightforward; 
similarly, while the treatment is for the ordinary eigenvalue problem (3), the 
generalized problem [5, 7, 10, 231, 

Axi = hiSxi , (6) 

where S is a given, symmetric, positive definite matrix, can easily be dealt with by 
replacing every scalar product of the form (a, b) (not containing A) by the corre- 
sponding form (a, Sb), including the scalar products in the denominator of (1) 
and in the orthonormality expression (5).] 

Lower case Roman subscripts will be used to distinguish different eigenvalues 
and eigenvectors, as in (3), while Greek lower case subscripts will denote compo- 
nents of matrices (as in ALLY) and vectors (e.g., 0,). The p-th component of the 
i-th eigenvector will be written as xUi . The notation e, will be used for the unit 
base vector in which only the p-th component is nonzero, 

(e,h = L . (7) 

If v is any vector, we shall define 

P(V) = (v, A$, q(v) = (v, VI, P(V) = Pwldv)~ (8) 

where p(v) is of course the Rayleigh quotient of v. 
Everything which will be said here of the lowest eigenvalues will also apply, 

of course, with suitable modifications, to the highest eigenvalues. 

2. Properties of the Rayleigh Quotient [9] 

Let v be an arbitrary vector, and let its decomposition in terms of the eigen- 
vectors of A be written in the form 

v = i Q(V) xi . 
i=l 
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The Rayleigh quotient (8) is expressible as a weighted average of the eigenvalues, 

p(v) = c XiCi2(V) ii -Jy c,‘(v). 
1 

Lt is a homogeneous function of v, 

and, in particular, 
p(h) := p(v), (11) 

p(h) = 4 , (12) 

where k is an arbitrary constant. It is easily seen that p(v) assumes its lowest (or 
highest) value h, (or X,) when v = kx, (or v == kx,); in case h, is degenerate, 
hl =-. h, == ... = X,, (r < n), p(v) will assume its lowest value when v is any vector 
in the space of {x1, x2 ,..., x,} (with a similar result for a degenerate X,). On the 
other hand, p(v) has a saddle-point whenever v = kxi (X, < hi < X,,,). 

It is thus clear that the problem of finding the lowest (highest) eigenvalue of A 
and a corresponding eigenvector is equivalent to the problem of finding a vector v 
for which p(v) is a minimum (maximum). 

3. Minif7zization oJ'p(v) [II] 

Given a trial vector v, let us choose a correction vector w, and define a new 
vector v’ by 

v’ = v -I- NW. (13) 

The optimum vector of the form v’ will be obtained by minimizing p(v’) with 
respect to CX, after which a new correction vector w will be chosen and the process 
repeated. In the gradient method w is chosen as the gradient of p(v) (2), while in 
the optimal relaxations method w is taken successively as the different base 
vectors eU . 

For the sake of compactness we shall use the notation 

p :-: p(v), p’ -~ p(v’), 

with similar definitions for p, p’, q, and 4’. Obviously, 

p’ = p -1. 24, Aw) t- a%(~, Aw), 

yf = q + 2r*(v, w) + ‘y”(w, w). 

As pointed out in [II], the derivative of p’ with respect to a: is given by 

(14) 

(13 

W/da = 2{[(v, Aw)q - (v. w) PI t [(w, Aw)q - (w, w) pla 
-t [(v, w)(w, Awl - (w, w>(v, -WI $I/{q 4 2(v, w)a + Cw, w) a2j2. (16) 

581/I I/I -7 
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Normally this derivative will vanish at two real finite values of cy, and will also 
tend to zero as u: ---f &co; p’ will then have one maximum and one minimum, 
and will tend to a constant value p’ + p(w) as 01 ---f +co. Special cases will be 
considered below (Section 11.4). The two extrema will be solutions of the quadratic 
equation 

where 

aiy2 + boI + c = 0, (17) 

a = Kv, w>(w, Aw) - (w, w>(v, Aw)l/q, 
b = (w, Awl - (w, w)p, 
c = (v, Aw) - (v, w)p. 

(18) 

The expressions (18) take on particularly simple forms when w is chosen as one 
of the base vectors e, : 

a = MG, -MS, 
b = A,, -P, 

c =.fu - PUU, 

(19) 

where 

fu = f Awv, > (20) 
u=l 

and the second Eq. (15) takes the form 

(21) 

The solution of (17) corresponding to a minimum of p’ is given by 

01 = ( -b + .\/b2 - 4ac}/(2a) 

z.zz 2c/(-b - @=-&ii& 
(22) 

with the second form more convenient computationally when b > 0 (in order 
to avoid the loss of significant figures as v - x1 and c --f 0). The Rayleigh quotient 
of v’ (for any value of a) is easily found from 

p’ = p + (ba + 2cb/q’, (23) 

with q’ given by (15). When (Y is given by (22) we find that (23) is equivalent to 

p’ = p - (a2/q’)(b2 - 4ac)li2, (24) 
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confirming that the solution (22) corresponds to a minimization of p’, while a 
maximization can be achieved by changing the sign of the radical in (22), and 
therefore in (24) (as will be shown below, b2 > 4ac always, and thus a: is always 
real). 

4. Special Cases 

In order to examine special cases in the solution of (17), let us decompose w 
into a vector parallel to v and another perpendicular to it: 

w = II + pv, (u, VI = 0, 
B = (v, m 

(in the gradient method we have p = 0). It is then seen that 

c = (u, Av), 

so that 

b = (u, Au) - (u, 4p + 2/k 

Q = BP - PC) - (u, UP/q, 
(26) 

b2 - 4ac = [(II, Au) - (II, u)p12 + 4(u, u) c2/q 3 0, 

confirming that 01 is always real. Furthermore, the second equality in (27) can 
only hold if a = b = c = 0, in which case p’ is independent of 01 (so that we may 
choose 01 = 0). 

Next we consider the case of a = 0, but b # 0; Eq. (17) then has one solution 
only, 01 = - c/b, which corresponds to a minimum of p’ if b > 0 and to a maximum 
if b < 0. An examination of (16) shows, however, that in the latter case p’ will 
have its lowest value, p’ = p(w), at OL -+ *cc, so that the appropriate solution 
for b < 0 is v’ = w. If, on the other hand, b = 0, then either a and c are both 
zero, or they both are nonzero and of opposite sign, in which case the solution 
corresponding to a minimum of p’ is 01 = sgn(u)(-c/a)112. Lastly, if c = 0, which 
happens, for example, if either v or u is an eigenvector of A, the appropriate 
solution is (y. = 0 if b > 0 and 01 = -l//3 if b < 0. In this last case v’ = -u/p, 
and it may be more convenient (particularly if /3 is very small or zero) to use 
v’ = u. 

5. The Computational Procedure for Optimal Relaxations 

As seen in (19) the calculation of the coefficients of the quadratic equation 
for one step of MOR is quite straightforward, most of the work going into the 
calculation of the sum f, of (20). This is the same sum that is required in the 
Cooper-Nesbet relaxational method [5-81; the extra work involved in MOR in 
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obtaining the solution (22) to the quadratic equation is trivial compared to the 
calculation of,f, in the case of large matrices. The same procedures which have 
been devised [5, 61 for the Cooper-Nesbet algorithm for the calculation of the 
f, sums in the case of very large sparse matrices arranged by rows of the lower 
triangle, involving the calculation and updating of the partial sums 

can be used without change in MOR. This means that J; is obtained from the 
nonzero elements of the p-th row of the lower triangle only, 

.f; = t, + i A,J, . (291 
v=l 

Then a, 6, and c are obtained from (19), the increment 31 is obtained from (22) 
(or the appropriate special case formula if any of the coefficients is zero or very 
small), 4 and p are updated by (21) and (23), respectively, c,, is adjusted by 

and the partial sums t, are updated by 

t,.’ = t, + Auvm (v = 1, 2,..., I” - 1) (31) 

in preparation for the next iteration, using the same matrix elements as in (29). 
[In the case of the generalized eigenvalue problem (6) it would be necessary to 
replace (21) by 

q’ = y + Gk, + &!d% (32) 

where the sum 

g, = 2 SuYL~v (33) 
,,=l 

is computed through equations analogous to (29) and (31).] If 01 in a given step 
turns out to be very small we may decide to forgo the adjustment of ZJ, at this 
time and skip any updating of q, p, and most importantly, the t, . This procedure 
is carried out for all p = 1, 2,..., n, in turn; we refer to one such cycle of n steps 
as an iteration. The process is iterated until all 0~‘s for a complete iteration are 
sufficiently small, and then the last v is normalized. (In hand computations on 
small matrices it may be advantageous to use an irregular, judiciously chosen 
sequence of steps [8], but for computer programs designed for large matrices 
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this would generally be impractical and the ordered sequence I” = 1, 2,.... II 
should be used.) 

6. Comparison with Other Methods 

To compare MOR with the Cooper-Nesbet relaxation procedure [7, 81, we 
apply the binomial expansion to the radical in the first line of (22) and obtain 
(assuming h :a 0): 

3 = -(c/b)[l -+ (2ac/b2) + . ..I. (34) 

The adjustment used in the Cooper-Nesbet method is a ~= -c/h, which is seen 
to be the first term of (34). As the solution for the lowest root h, is approached 
(in which case b > 0), we have c ---f 0 and the two methods become equivalent, 
but they are definitely inequivalent when p is not yet close to h, . In particular. 
when v is proportional to an eigenvector xi (h, > h,), the Coopers-Nesbet adjust- 
ments are all zero and no further change in v occurs, but in MOR p will continue 
to converge downwards provided b < 0 (i.e., A,, < p) for at least one value of I”. 
Of course, the Cooper-Nesbet algorithm may easily be modified, when h, is the 
desired root, to replace v by e, [or by e, - (v,/q)v] whenever b < 0; in fact if the 
initial trial vector is chosen as e, , where A,, is the lowest diagonal element of A, 
then b > 0 automatically (and increases monotonically for each component of v). 
Both methods cannot guarantee convergence to the lowest root in those cases in 
which the next higher root is also lower than the lowest diagonal element of A, 
though it is believed (without proof) that MOR is less likely to fail to reach the 
lowest root than the other method. Experience has shown that MOR convergence 
is considerably faster than the Cooper-Nesbet procedure when the initial trial 
vector is a very poor estimate for x1, but, as expected, the rates of convergence 
are comparable when reasonably good trial vectors are obtainable. 

Comparing MOR with the gradient procedures [9, lo], we note that in the 
latter each iteration, which involves the use of all the (nonzero) elements of A 
and O(n2) multiplications, is about comparable in computational effort (in the 
case of very large matrices) to a complete iteration, made LLP of tl adjustment 
steps, of the former. If we denote by i, and i, the number of complete iterations 
required for convergence, for the same matrix, by the gradient and optimal 
relaxation methods, respectively, so that ni, is the number of adjustment steps 
in MOR, then our experience with large matrices can be summarized in the 
inequalities 

i,. < i, < tii,. . 

In fact, while we find that i, = O(@), where s is not very much less than I, resulting 
in a total computational effort for the gradient method of O(H*+~) m O(tz3), in 
contrast i,. appears to be almost independent of n, being of the order of 10 in a 
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very large number of computational experiments with matrices of order up to 
w104, leading to a total computational effort for one root by MOR of 0(10n2), 
which is much more favorable when n > 10. While the gradient method can be 
made to yield more than one root in one iterative sequence [9, lo], it is still much 
slower in the calculation of even a few roots than the generalizations of MOR 
described in Sections III and IV. 

The computational effort in most noniterative methods [18], as well as in some 
iterative procedures such as the Jacobi and power methods, is generally of 0(n3), 
and they generally involve considerably increased computation times if the 
matrix A cannot be fully accommodated in the computer’s central memory. 

111. THE ROOT-SHIFTING METHOD FOR HIGHER EIGENVALUES 

1. Description of the Method 

The first approach which will be considered for the calculation of additional 
roots by MOR is a generalization of a procedure applied by Hotelling [24] (see 
also [IS]) to the power method and used by Cooper [8] with his relaxation method 
for the case of matrices with all positive eigenvalues. The generalization depends 
on the fact that the matrix 

k-l 

Atk’ = A + 1 qiXiXiT (k < 4, (35) 
i=l 

where xi are orthonormal eigenvectors of A and qi are arbitrary constants, has 
the same eigenvectors as A 

Atk’xi = X’ik’xi , (36) 

and its eigenvalues are related to the roots of A by 

Xjk’ = hi + qi (i = 1, 2 ,..., k - l), 

X!k’ = A. z (i = k, k + l,..., n). (37) 
2 

This is easily verified by direct substitutions. [In the case of the generalized eigen- 
value problem (6), where orthonormality is defined with respect to a positive 
definite symmetric matrix S, the product xiXiT in (35) should be replaced by 
SXixiTS; this complicates the computational procedure unless S has very few 
nonzero elements.] Thus, once some eigenvalues & and eigenvectors xi 
(i = 1, 2,..., k - I) of A have been found, it is possible to “shift” these eigenvalues 
by a suitable choice of the shift parameters qi such that the next desired eigen- 
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value X, will be the lowest root of A(‘;‘, to which MOR may be applied. In 
Hotelling’s original formulation the shift parameters were chosen as qi = -hi , 

making hkk.) = 0 (i < k); this choice is of course the most appropriate for the 
power method, and was not too inadequate for Cooper’s calculations involving 
small matrices with all eigenvalues positive. As shall be seen below, more carefully 
chosen shift parameters are needed for the relaxation methods in the general 
case with large matrices. 

Obviously, while A may be sparse, AfL) (k > 1) is generally not sparse at all, 
and the simple replacement of A by A”;’ would make this method quite unsuitable 
in the light of the discussion in Section I. However, A(“‘) need never be computed 
explicitly, since the only quantities involving it in the calculation are the scalar 
products which appear in (18). It is easily seen that if a and b are any two real 
vectors, then 

k-l 

(a, A(“)b) = (a, Ab) + c qi(a, xi)(xi , b). 
i=l 

(38) 

(Note that (38), unlike (36-37), does not depend for its accuracy on the xi’s being 
exact eigenvectors of A, but only on these vectors being orthonormal.) For the 
quantities required in (19) we shall have 

k-1 

AL”,’ = (elL , Atk)eu) = Auu + C q#, , 
i=l 

k-l 

.fy’ = (eLL , Atk)v) = .f, + C qixLliri , 
i=l 

(39) 

(40) 

where 

ri = (v, xi) (i = 1, 2 ,..., k - I). (41) 

The scalar products ri need only be computed once with the initial trial vector v, 
and are then updated by 

rir = ri + axwi (i = 1, 2 ,..., k - l), (42) 

whenever v is adjusted. The calculation can then proceed in the same manner 
as before, using the original matrix A, except for the additional short summations 
of (39-40) and the updating in (42). Of course we have to save the lower eigen- 
vectors Xi (i = 1, 2,..., k - 1) for the calculation of xk, but if central memory 
capacity is a problem these may be stored externally as a rectangular n x (k - 1) 
matrix X with components xUi , arranged by rows, and only the p-th row brought 
into central memory for the adjustment step for v, ; this means however that the 
matrix X has to be re-organized on external storage each time a new eigenvector 
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is added. [Again, for the generalized eigenvalue problem (6), xWi of (39-42) will 
have to be replaced by yUi = zV SUyxyL , making the procedure much less attractive 
unless S has very few non-zero elements, or unless we store the vectors yi = Sx, .] 
In cases of slow convergence, in order to reduce the accumulation of rounding 
errors in the continuous updating of the t,‘s, ri’s, q and p, it may be advisable to 
recompute these quantities occasionally (say after each 10 iterations). 

2. Choice qf Shift Parameters 

As each eigenvector xk is calculated in turn, the shift parameters qi needed 
for the calculation of the next vector have to be redetermined if reasonably rapid 
convergence is to be achieved. It has been found empirically that large values of 
these parameters tend to slow down convergence, presumably because they reduce 
the dominance of the main diagonal in AtL) (this is why Hotelling’s and Cooper’s 
choice of qi = --hi is generally inappropriate in the present case). On the other 
hand the qf have to be large enough to shift all previously computed eigenvalues 
well above the next root sought, for convergence is relatively slow if there are 
any other distinct roots in the near neighborhood of the currently lowest eigenvalue. 
The following scheme for the choice of the shift constants for the calculation of 
the k-th root has been found to be near optimum in a large number of test calcula- 
tions: 

(a) Having chosen an initial trial vector vu for the k-th root (this choice 
will be considered further below), orthogonalize it to the previously computed 
eigenvectors xi (i = 1, 2,..., k - 1) by the Schmidt procedure, 

Ii-1 
y = v,, -.- c (Xi ) V”) xi . 

i-1 

This ensures that p(v) > A, 

(b) Compute the quantity 

qo = p(v) -. A, . (44) 

(c) Choose the shift constants by the formula 

4i = sq, - (Xi - A,) (i = 1, 2 ,..., k ~ l), (45) 

where s is a constant somewhat greater than 1; a value of s = 1.3 has been found 
empirically to yield good results in many tests. This procedure results in 

A!k) = p(v) + (s - 1) q. > A, + (s - 1) q. L (i = 1, 2 ,..., k -. 1). (46) 
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If the initial trial vector was a very poor approximation to X~ the steps (a)--(c) 
may be repeated occasionally as p(v) is lowered by the iterations. 

3. Convergence 

An analytical study of the convergence of this method has not been carried 
out, but obviously the considerations which apply for the basic method (Section II) 
apply here to the matrices A (i). Again, convergence to the lowest root of A’“) 
cannot be guaranteed if the next root ,I,.+, (or the shifted roots Xi”‘) is lower than 
the lowest diagonal element of A(“‘, though such a case of a “skipped” root has 
not occured in any of our test calculations. Furthermore, a root which has been 
skipped in the step involving A (I,) is likely to appear in the next step. if the process 
is continued. 

As stated, in most cases the number of iterations required to obtain convergence 
for each root (to an accuracy of about IO-” for the components of the normalized 
eigenvector) was of the order of 10 with the matrices obtained in many configura- 
tion interaction calculations. Usually only about 7 iterations were needed for the 
lowest root, and this number increased slowly for higher roots as the denser 
regions of the spectrum of A were approached. Convergence was generally very 
slow for roots which were quite close to the next higher root, even requiring a few 
hundred iterations in one case involving a pair of very nearly degenerate eigen- 
values. An extrapolation method, described in Section V, was found to be very 
effective in such cases, reducing the number of iterations to a few tens, at most. 
The case of exact degeneracy was not encountered in any of our calculations, 
but it seems that no difficulty should occur in that event. (For another treatment 
of close eigenvalues, in the context of the gradient method, see Rosser et a/. [25]. j 

Any inaccuracy in a computed eigenvector would of course greatly reduce the 
accuracy of the higher eigenvectors computed by the root-shifting method, and 
if several roots are desired it may be advisable to start out with a smaller conver- 
gence criterion for x in the calculations of the first few roots than is required for 
the higher roots. No problems with error accumulation were encountered with 
the root-shifting method in our calculations, in which up to 10 roots were 
calculated for some matrices. Of course, if all or many of the roots are required 
it would be advantageous to use a different method entirely, such as some version 
of Householder’s method [IS, 19, 231, or perhaps the gradient method. 

IV. THE ORTHOGONALITY CONSTRAINT METHOD FOR HIGHER EIGENVALUES 

An alternative approach to the root-shifting method is that of maintaining 
orthogonality of the trial vector to lower eigenvectors throughout the iterations. 
Such an approach has been suggested, for example, by Hestenes and Karush [9], 
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and Hotelling [24] has suggested the use of occasional Schmidt orthogonalizations 
for the removal of lower-vector contaminations (due to rounding errors) when the 
power method is applied to an initial trial vector which is orthogonal to lower 
eigenvectors (when the root-shifting procedure is not used). 

In the present case the orthogonality constraints can be applied very easily 
and systematically in the following manner: 

If a is any vector, define 

In particular, 

ack) = a - 1 (xi , a) xi . 
i=l 

(47) 

(48) 

If the trial vector v for the calculation of the k-th root is first replaced by vu) 
according to (47), and if the correction vectors w of (13) are taken as the ef’ of 
(48) instead of err , then except for rounding errors the trial vector will remain 
orthogonal to the lower eigenvectors throughout the iterations. Any contamina- 
tions due to rounding can be removed by occasional reorthogonalization of the 
trial vector. 

We now have to recompute the expressions for the coefficients (19) of the 
quadratic equation by substituting w = er’ in (18). This is facilitated by the 
result that for any pair of vectors ack) and b(“‘), defined as in (47) 

k-l k-1 

(atk), Ab(“)) = (a, Ab) - c (a, Ax,)(x, , b) - c (a, Xi)(Xi , Ab) 
i=l i=l 

k-lk-1 

+ 1 1 (a, x&xi , b>h , Ad 
i=l j=l 

k-l 

= (a, Ab) - c &(a, xi)(b, xi). 
i=l 

(49) 

It is important to notice that while the first equality of (49) is exact, the second 
equality, unlike (38) of the root-shifting method, depends for its accuracy on the 
xi (i = 1, 2,..., k - 1) being exact eigenvectors of A, and its use is likely to cause 
a greater sensitivity of the orthogonality constraint procedure to errors in lower 
eigenvectors. We also have 

k-l 

(ack), b’“)) = (a, b) - c (a, xJ(b, xi); 
i=l 

(50) 

this depends for its accuracy only on the xi being orthonormal. 
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Applying (49, 50) to the scalar products of (18) with v and w replaced by vCk) 
and e(i), respectively, we get equations similar to (19-23) but with A,, , etc., 
replaced by: 

k-l 

k-l 
p) - 

" -- “u - L ‘ixui ’ 

k-l 

k-l 

4 
(JL.1 = q - c Ti2, 

i=l 

k-l 

P ‘k) = p - c hJi2, 
i=l 

P 'k) = p'"'/q'"', 

with ri given by (41), and with the second equation in (19) replaced by 

b = A’k’ _ p’“‘e;;, 
LLU 

where 
k-l 

e’k) = 1 - ; Xfi . uu 

(51) 

(52) 

(531 

(54) 

(55) 

(56) 

(57) 

(58) 

Note that (54-56) are only used with the initial trial vector, while 9’“) and pci) 
are updated by 

and 
(59) 

P ‘k)’ = p”-“ + (bol + 2+/q’““, (60) 

respectively. In the computational procedure based on this analysis we store and 
update v, not ~(~1, throughout the iterations, since (30) is much shorter than the 
procedure for updating vtk), and we continue to use (28-29) followed by (51-53), 
(58), the equivalent of (19) (noting (57)) then (22) and the updatings of (30-31) 
and (59-60); vtk) is computed by (52) after convergence has been achieved. [As in 
the case of the root-shifting method, the procedure for the generalized eigenvalue 
problem (6) involves the use of the vectors yi = Sxi instead of Xi .] 
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As noted previously, the orthogonality constraint procedure is rather sensitive 
to inaccuracies in the lower eigenvectors, primarily because of the use of the 
second equation in (49) and thus convergence criteria have to be tighter than in 
the root-shifting version. This sensitivity can be reduced somewhat if v is explicitly 
orthogonalized to the lower eigenvectors initially and then after every few com- 
plete iterations, with all updated quantities being recomputed at these times. 
Another approach is to save the vectors f, = Axj and the scalars (xi, Axj) -1 (x, , fj) 
(1 5: j :;I, i < k) and then use the first form of (49); this may still be quite practical 
if k is not large. It should also be noted that the 12 different adjustment vectors el’;’ 
(p = 1, 2,..., n) are not linearly independent if k > 1, but this causes no problems. 
In case any ep (“) becomes very small in magnitude, such as when e::‘;’ of (58) is less 
than .Ol, the corresponding adjustment step is best skipped. 

In general, it has been found that the orthogonality constraint method often 
converges in slightly fewer iterations than the root-shifting procedure, but the 
former involves a more complicated computer program and takes somewhat 
longer per iteration. The total computer time for the same problem is usually 
about equal by the two methods. 

V. EXTRAPOLATION PROCEDURE 

In cases of slow convergence it has been found helpful to use a modified form 
of the well-known Aitken’s S2 extrapolation scheme for the eigenvector compo- 
nents. In the usual a2 process, if s, s’ = s + a, and sN = s’ + a’ are successive 
approximations to some quantity S, we assume that the increments a, a’, etc. are 
in approximate geometric progression, leading to 

j m f + (a’)“/(a - a’). (f-51) 

To apply this in a given iteration of MOR we have to save all the 01’s in the previous 
iteration and use them as the increments a in (61) for the corresponding steps in 
the current iteration, using the new a: for a’ and v,’ for s”. It is generally advisable 
not to replace the normally computed v,’ components by the extrapolated values 
until the end of the iteration, in order to maintain the smoothness of the process, 
saving the extrapolated components meanwhile in the same array which has been 
used to save the previous increments 01 (thus requiring storage for only one addi- 
tional array of length n for the extrapolation process). When replacing v by the 
extrapolated vector it is also convenient to use this opportunity to recompute 
the quantities q, p, t, , and ri directly and thus reduce the accumulation of rounding 
errors in the updatings. Also, in the orthogonality constraint procedure this is 
a convenient time to reorthogonalize v to the lower eigenvectors. 



EIGENVALUES OF LARGE MATRICES 107 

Due to the limited smoothness of the iteration process, and especially to deal 
with cases in which the increments 01 increased temporarily from one iteration to 
the next, it was necessary to modify the usual P process of (61) by applying 
constraints on the magnitude and sign of the extrapolation increment. Backward 
extrapolation (I u’ > I a i) was found to occur particularly in some cases in 
which, during the iterations, p(v) passed through values close to a higher root 
than the one being sought (this generally happens in cases of near degeneracy). 
In such cases the normal extrapolation may pull p(v) back towards the higher 
root and thus retard convergence. The following modification of the S* process 
was found empirically to produce satisfactory results: A constant h in the range IO 
to 30 (usually 20) was chosen, and whenever the ratio of the extrapolation incre- 
ment (a’)2;‘(a - a’) to the last normal increment U’ was found to be negative or 
greater than h, (61) was replaced by 

Extrapolation after every 10 iterations was found to be near optimum in most 
cases (if more than 10 iterations were required for convergence). 

For the initial trial vectors it has generally been found adequate, for the k-th 
root, to use e, , where A,, is the k-th lowest diagonal element of A. 

The total computer central storage required by the procedures described in this 
paper includes (k + 3) arrays of length n to store the vectors v, t, the current row’ 
of the lower triangle of A, the increments 01 saved for the extrapolation procedures, 
and the previous eigenvectors xi. If necessary, as previously stated, the eigen- 
vectors xi need not be kept in central memory continuously, and only an array 
of length k ~- I for the current (p-th) components of all the xi’s needs to be 
provided, in addition to two more arrays of this length for the ri and the hi 
(i = 1, 2,..., k - I). Furthermore, only the nonzero elements of the current row 
of A, suitably identified, need be stored and used in (29) and (31). 

Both the root-shifting and orthogonality constraint procedures, with the 
modified 6” extrapolation, have been used at this laboratory in numerous Cl 
calculations involving matrices of order -10’ to 1O4, containing up to 2 x 10” 
nonzero elements, with between 1 and 10 roots computed in each case, and no 
failure to converge in a reasonable number of iterations (usually about IO per root, 
but sometimes up to about 102) has been observed. 
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